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Summary 
 
 Results are presented from a parametric assessment of the applicability and spacecraft-level impacts of very 
lightweight thin-film solar arrays with relatively large deployed areas for representative space missions. The most 
and least attractive features of thin-film solar arrays are briefly discussed. A calculation is then presented illustrating 
that from a solar array alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can 
weigh less than smaller arrays with more efficient but heavier crystalline cells. However, a spacecraft-level systems 
assessment must take into account the additional mass associated with solar array deployed area: the propellant 
needed to desaturate the momentum accumulated from area-related disturbance torques and to perform aerodynamic 
drag makeup reboost. The results for such an assessment are presented for a representative low Earth orbit (LEO) 
mission, as a function of altitude and mission life, and a geostationary Earth orbit (GEO) mission. Discussion of the 
results includes a list of specific mission types most likely to benefit from using thin-film arrays. The presentation 
concludes with a list of issues to be addressed prior to use of thin-film solar arrays in space and the observation that 
with their unique characteristics, very lightweight arrays using efficient, thin-film cells on flexible substrates may 
become the best array option for a subset of Earth orbiting and deep space missions. 
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Photovoltaic Array MetricsPhotovoltaic Array Metrics

Feature

• Low Cost 

• Low Mass

• Packageability

• Deployability

• Small Deployed Area  

• Reliable Performance

• Radiation 
• Op. Temperature
• Hi-Voltage Capability

Which array technology will have the advantage?

• Thin-film arrays: although still unproven. 

• Thin-film arrays: Highest Specific Power (W/kg)
– Although large area results in a greater total mass 

penalty (array + propellant) for lower altitude LEO

• Thin-film arrays

•Crystalline-cell rigid panel arrays

• Crystalline-cell arrays: Highest Specific Area (W/m2)
+ Always at least ½ the size of Thin-Film arrays?

• Crystalline-cell arrays: long history of successful 
  performance, but thin-film arrays show promise.

• Thin-film cells more tolerant
• MJ GaAs cells have better thermal coefficient
• Thin-film cells easier to isolate from plasma

ThinThin--film & crystalline cell arrays film & crystalline cell arrays 
each have attractive features!each have attractive features!
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High ηηηη  Crystalline Cell Arrays
Flexible Planar, Inflatable or Concentrator Arrays

~ Highest Specific Area (W/m2) ~

100 W/kg

DS-1 (SCARLET)
8x Concentrator 

50 W/kg

200 W/kg

300 W/kg

500 W/kg

1000 W/kg

MBG 
Cells

Thin Si 
Cells

Thin-Film
 Cells

Thin-Film Cell Arrays
~ Highest Specific Mass (W/kg) ~

Lowest Cost?

Note: Specific Pow er (W/kg & W/m^2) reference
lines assume a 0.85 cell packing factor.

200 W/m2 300 W/m2 400 W/m2

3-j MBG Cells

4-j MBG Cells?

Thin Si Cellsα-Si Cells

CIGS Cells

100 W/m2

Boeing 702
2x Concentrator 

70 W/kg

2-j MBG

Terra (EOS AM-1)
Flexible Planar

44 W/kg 

Mars '01 Lander
Ultraflex (106 W/kg)
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How efficient do thinHow efficient do thin--film cells film cells 
have to be?have to be?

Arrays with less efficient but lighter thin-film cells can match the mass of arrays 
with more efficient but heavier MBG crystalline cells.

2nd Order
Support structure will be optimized for light-
weight thin-film cell blankets
• 12% TF cells on 0.27 kg/m2 structure matches the 

specific mass of 30% MBG cells on 0.5 kg/m2 

structure for arrays with same deployed stiffness.

However, to meet EOL power rqmt at max op temp
• Need 17% BOL 28°C Thin-Film cells

1st Order: Equate array specific power at BOL, 28° C      W/kg=(W/m2) / (kg/m2)

=>TF Cell Eff = MBG Cell Eff x   (Array Structure + TF Cell Area Sp. Mass)
(Array Structure + MBG Cell Area Sp. Mass)

5%

10%

15%

20%

25%

0 0.5 1 1.5 2
Array Structure Specific Mass, kg/m2

Thin-Film Cell Efficiency Needed to 
Match the Specific Power of a 30% 

MBG GaAs Cell Array as a Function of 
Array Support Structure Specific Mass

•  Mass-Equivalent array with a 0.5  kg/m2  structure:
• 30% efficient 1.0 kg/m2 MBG cells
• 14% efficient 0.2 kg/m2 thin-film cells

Change in Cell Efficiency 
vs Operating Temperature

70%

75%

80%

85%

90%

95%

100%

20 °C 30 °C 40 °C 50 °C 60 °C 70 °C 80 °C

Cell Operating Temperature

Solar Cell Operating TemperatureSolar Cell Operating Temperature

GaAs @ - 0.22% per °C

CIGS @ - 0.55% per °C

11.5% Eff.
(23.3% Loss)

15% Eff.

27.2% Eff.
(9.3% Loss)

30% Eff.

The lightweight, radiation tolerant advantage of thin-film 
CIGS is offset by its temperature coefficient for efficiency 
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LEO Solar Array Area Impacts:
Larger Arrays Require Additional Propellant
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10% Thin-Film Array + Prop.
15% Thin-Film Array + Prop.

* Mass Normalized to
 30% MBG Rigid Solar Array (65 W/kg) Case

"Prop." is propellant for momentum wheel 
desaturation and drag makeup; Isp = 220 s

All flexible arrays assume a coilable 
deployment boom sized for > 0.25 Hz 
minimum first fundamental frequency.

2 kW EOL Bus Power
5 year Mission
Earth (Nadir) Pointing Spacecraft
Avg Atmosphere
Sun Tracking Arrays
Cp - Cg = 1m

Aerodynamic Torque/Momentum (Secular)
 Dominates

Gravity Gradient Momentum (Secular)
Solar Pressure Torque (Cyclic)

 Dominate

Other factors such as cost or 
stowability may favor thin-

film arrays for LEO missions.

…larger LEO solar arrays will require more propellant.

Including spacecraftIncluding spacecraft--level impacts…level impacts…

LEO Solar Array Area Impacts:
The shorter the mission, the less the impact of Larger Arrays
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desaturation and drag makeup; Isp = 220 s

500 km Altitude
2 kW EOL Bus Power
Earth (Nadir) Pointing 
Spacecraft
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Sun Tracking Arrays
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…longer LEO missions with larger solar arrays will 
require more propellant.

Including spacecraftIncluding spacecraft--level impacts…level impacts…
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NASA/AFRL Sponsored Comprehensive NASA/AFRL Sponsored Comprehensive 
Solar Array Study by AEC AbleSolar Array Study by AEC Able

• Missions:

• LEO, MEO, GEO, SEP Transfer, 
Interplanetary

• PV Cell Technologies:
• MJ Crystalline at 25%, 30% & 35% Eff.
• Thin-Film at 10%, 15% & 20% Eff.; 
0.2 and 0.4 kg/m2

• Array Technologies:

• Rigid Panel, CellSaver, Stretched Lens 
Array, Aurora, Ultraflex, SquareRigger

• Evaluation of complete systems incl. 
launch restraints, yokes, wire 
harnesses, deployment 
synchronization etc.

• Environments:
• Deployed & Stowed Stiffness
• Cell operating temperature
• Radiation degradation

Cell AM0, 28°C BOL Efficiency

System Specific Power (W/kg)
GEO Mission 20 kW Array at EOL 
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Preliminary Array Study ResultsPreliminary Array Study Results

Performance of Shielded Thin-Film & 3J Crystalline PV in Various Earth Orbits
• Assumed photovoltaic only mass:

• CIGS = 0.2 kg/m2 (On 30 µµµµm titanium foil)
• 3J GaInP/GaAs/Ge = 0.75 kg/m2 (140 µµµµm thick Ge wafer)
• Radiation shielding optimizes array specific power (W/kg)

EOL Areal Power With Shielding Optimized for W/kg
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• EOL W/m2 always higher for 3J cell 
compared to CIGS

2.3x

4.1x

2.2x

Results do not include 
array structural 
support mass!

EOL Specific Power for CIGS & 3J Cells
 with Optimized Shielding
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Solar Array Specific PowerSolar Array Specific Power
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Array Level

10% CIGS

15% CIGS

305

466

404
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395

604
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Cell  Blanket (0.22 kg/m2)

10% CIGS

15% CIGS

1 AU

Op. Temp.
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28° C
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Op. Temp.
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28° C

EOLBOLMass Specific Power
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What’s in the numerator & denominator?

Lunar L1 “Gateway” SEP StageLunar L1 “Gateway” SEP Stage

Features

• 180-day trip time, 400 km 28.5° LEO-Lunar L1

• 46-day return, Lunar L1 - 400 km 28.5° LEO

• 584 kW SEP Stage Power (2 round trips)

• 7,300 m2 High-Voltage Thin-Film Solar 
  Arrays (2 wings)

• 12 Direct-Drive Hall Effect 50 kW Engines 
  (incl. 1 spare)

Mass Characteristics

• 15.0 MT SEP Stage Dry Mass (w/ 20% 
  margin)

• 20.0 MT Xenon propellant

• 30.0 MT Payload

• 65.0 MT Vehicle Initial Mass LEO

Solar Arrays not 
shown (see below)

SEP “Main Body”

Deployable 
Boom

Thruster Pallet with 
Hall Effect Engines

Radiator (x4)

Xenon 
Tank Pallet

Gateway Habitat Payload

Xenon Pallet

SEP Main Body

HET  PalletThruster Boom
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Far Term ThinFar Term Thin--Film ApplicationFilm Application
Humans on MarsHumans on Mars

• 1100-Day Surface Mission

• Operate ISRU Plant (400-days)

• Support Crew  (500-days)

• 5000-m2, 100 kW Class Array

• Auto-Deploy Tent Structures

• 4.5-m Height by 100-m Length 

• Thin Film PV on Thin Polymer 
  Membrane Enabling

• Small Packaging Volume

• Low Mass

ThinThin--Film Array Mission Film Array Mission 
Applicability SummaryApplicability Summary

• Once designed, tested and space-qualified, very lightweight solar arrays 
  using moderate to relatively high efficiency thin-film cells on lightweight 
  flexible substrates will offer significant mass and cost benefits.

• > 10% to 15% (1-Sun AM0) efficient >10-cm2 thin-film cells with on low-mass 
substrates (1-mil metallic, 5-mil pre-preg composite ply, 2-mil polymer, open-
weave polymer) resulting in solar cell “blankets” at 0.2 to 0.3 kg/m2.

• Beyond Earth orbit applications include:
• LEO-to-L1 SEP Transfers
• LEO-to-? SEP Transfers
• Large Surface Power Systems

• Attractive Earth-Orbiting applications for Thin-Film arrays include:
• LEO missions above 500 km to 800 km but below 4,000 km
• LEO missions of short duration at lower altitudes
• LEO sun-sync missions with array normal perpendicular to velocity vector
• LEO-to-GEO transfers
• GEO missions
• Certain very small micro/nanosat missions
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alone mass perspective, larger arrays with less efficient but lighter thin-film solar cells can weigh less than smaller arrays
with more efficient but heavier crystalline cells. However, a spacecraft-level systems assessment must take into account the
additional mass associated with solar array deployed area: the propellant needed to desaturate the momentum accumulated
from area-related disturbance torques and to perform aerodynamic drag makeup reboost. The results for such an assess-
ment are presented for a representative low Earth orbit (LEO) mission, as a function of altitude and mission life, and a
geostationary Earth orbit (GEO) mission. Discussion of the results includes a list of specific mission types most likely to
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